

Department of Mathematics

MURAGACHHA, NADIA, PIN- 741154

Phone No.: 03474-268008 web: www.muragachhagovtcollege.org e-mail: mgcnadia2015@gmail.com

Ref. No.....

Date

TEACHING PLAN FOR THE ACADEMIC SESSION 2024-25 ODD SEMESTER

Semester-I (2024-25 Batch)

(As per syllabus effective from the academic session 2021-22)

Course Code	Course Title			
	B.Sc. Mathematics Hons.			
MATH-H-CC-T-01	Calculus & Analytical Geometry			
MATH-H-CC-T-02	Algebra			
Gener	General Elective Course (B.Sc. Hons. other than Mathematics)			
MATH-H-GE-T-01	Algebra & Analytical Geometry			

<u>Teaching Plan</u>

B.Sc. Mathematics (Honours) SEMESTER-I Course: MATH-H-CC-T-01 Course title: Calculus & Analytical Geometry

Credit-6(5+1) (Theory + Tutorial)

Unit	Торіс	Teacher	No. of Lectures
1	• Hyperbolic functions and its derivative, higher order derivatives, Leibnitz rule and its applications to problems of type	Mr. Prabir Chakraborty	25L
	$e^{ax+b}\sin x$, $e^{ax+b}\cos x$, $(ax+b)^n\sin x$, $(ax+b)^n\cos x$	Charlabolty	
	• Pedal equations.		
	• Curvature, radius of curvature, centre of curvature, circle of		
	curvature		
	• Asymptotes.		
	• Singular points, concavity, and inflection points.		
	• Curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves.		
	• L'Hospital's rule, applications in business, economics, and life		
	sciences.		
2	• Reduction formulae, derivations and illustrations of reduction	Mr. Prabir	16L
	formulae of the type $\int \sin^n x dx$, $\int \cos^n x dx$, $\int \tan^n x dx$,	Chakraborty	
	$\int \sec^n x dx$, $\int (\log x)^n dx$, $\int \sin^n x \cos^m x dx$		
	• Parametric equations, parameterizing a curve, arc length of a		

Department of Mathematics

MURAGACHHA, NADIA, PIN- 741154

Phone No.: 03474-268008 web: www.muragachhagovtcollege.org e-mail: mgcnadia2015@gmail.com

)		Da	te
	curve, arc length of parametric curves, area under a curve, area, and volume of surface of revolution, techniques of sketching conics.		
3	 Transformation of coordinate axes, pair of straight lines, reflection properties of conics, canonical form second degree equations, classification of conics using the discriminant, polar equations of conics. Straight lines in 3D, sphere, cylindrical surfaces. central conicoids, paraboloids, plane sections of conicoids, generating lines, classification of quadrics, illustrations of graphing standard quadric surfaces like cone, ellipsoid. 	Mr. Prabir Chakraborty	30L
	Graphical Demonstration (Teaching Aid)	1	
sin(a on th 2. Pl graph 3. S hypo 4. Ol 5. Tr 6. Sh	otting of graphs of function e^{ax+b} , $\log(ax + b)$, $\frac{1}{ax+b}$, $ax + b$), $\cos(ax + b)$, $ ax + b $ and to illustrate the effect of a and b he graph. Notting the graphs of polynomials of degree 4 and 5, the derivative h, the second derivative graph and comparing them. ketching parametric curves (e.g., trochoid, cycloid, epicycloids, beycloid). Dataining the surface of the revolution of curves. racing of conics in Cartesian coordinates/ polar coordinates. ketching ellipsoid, hyperboloid of one and two sheets, elliptic cone, tic, paraboloid, and hyperbolic paraboloid using Cartesian	Mr. Prabir Chakraborty	4L

B.Sc. Mathematics (Honours) SEMESTER-I Course: MATH-H-CC-T-02 Course title: Algebra

Credit-6(5+1) (Theory + Tutorial)

Unit	Торіс	Teacher	No. of
			Lectures
1	• Polar representation of complex numbers, n-th roots of unity, De	Dr. Biswajit	30L
	Moivre's theorem for rational indices and its applications. Direct	Saha	
	and inverse circular form of trigonometric and hyperbolic		
	functions. Exponential & Logarithm of a complex number.		
	Definition of a^z		
	• Relation between roots and coefficients, transformation of		
	equation, Descartes rule of signs, solution of cubic equation		
	(Cardan's method).		
	• Well-ordering property of positive integers, division algorithm,		
	divisibility, and Euclidean algorithm. Congruence relation between		
	integers. Principles of mathematical induction, statement of		

Department of Mathematics

MURAGACHHA, NADIA, PIN- 741154

Phone No.: 03474-268008 web: www.muragachhagovtcollege.org e-mail: mgcnadia2015@gmail.com

No	Io Date		e
	fundamental theorem of arithmetic.		
2	• Equivalence relations and partitions. Functions, composition of	Dr. Biswajit	25L
	functions, Invertible functions, one to one correspondence and	Saha	
	cardinality of a set.		
	• Permutations, cycle notation for permutations, even and odd		
	permutations.		
	• Definition and elementary properties of groups. Symmetries of a		
	square, dihedral groups, quaternion groups (through matrices).		
	Permutation group, alternating group, finite groups: s_3, V_4 . The		
	group Z_n of integers under addition modulo n and the group U_n of		
	units under multiplication modulo n.		
	• Order of an element, order of a group, simple properties.		
3	• Orthogonal matrix and its properties. Rank of a matrix, inverse of	Dr. Biswajit	20L
	a matrix, characterizations of invertible matrices. Row reduced and	Saha	
	echelon forms, Normal form, and congruence operations.		
	• Solutions of systems of linear equations of the form $Ax = b$ and		
	their applications.		

B.Sc. Other than Mathematics (Honours) SEMESTER-I Course: MATH-H-GE-T-01

Course title: Algebra & Analytical Geometry

General Elective Course

Credit-6(5+1) (Theory + Tutorial)

Unit	Торіс	Teacher	No. of
			Lectures
1	• Complex umbers De Moivre's theorem and its applications.	Mr. Prabir	40L
	Exponential, Sine, Cosine and Logarithm of a complex number.	Chakraborty	
	Definition of a^{z} . Inverse circular and hyperbolic functions.	-	
	• Polynomials: Fundamental theorem of algebra (Statement		
	only). Polynomials with real coefficients, nature of roots of an		
	equation (surd or complex roots occur in pairs). Statement of		
	Descartes rule of signs and its applications. Relation between		
	roots and coefficients, transformations of equations. Cardan's		
	method of solution of a cubic equation.		
	• Rank of a matrix: Determination of rank either by considering		
	minors or by sweep-out process. Consistency and solution of a		
	system of linear equations with not more than 3 variables by		
	matrix method.		
	• Equivalence relations and partitions. Functions, composition of		
	functions, invertible functions, one to one correspondence and		
	cardinality of a set		
	• Definition and elementary properties of groups. Concepts of		

Department of Mathematics

MURAGACHHA, NADIA, PIN- 741154

Phone No.: 03474-268008 web: www.muragachhagovtcollege.org e-mail: mgcnadia2015@gmail.com

Ref. No		Da	ate	
	permutation Group, alternating group, finite groups: S_3, V_4 . The group Z_n of integers under addition modulo n. • Order of an element, order of a group, subgroups, and examples of subgroups.			
2	 Transformations of rectangular axes: Translation, rotation, and their combinations. Invariants. General equation of second degree in x and y: Reduction to canonical forms. Classification of conics. Pair of straight lines: Condition that the general equation of 2nd degree in x and y may represent two straight lines. Point of intersection of two intersecting straight lines. Angle between two lines given by ax² + 2hxy + by² = 0. Equation of bisectors. Equation of two lines joining the origin to the points in which a line meets a conic. Polar equation of straight lines and circles, polar equation of a conic refers to a focus as a pole, polar equation of chord joining two points, polar equations of tangents and normals. 	Mr. Prabir Chakraborty	35L	

Department of Mathematics

MURAGACHHA, NADIA, PIN- 741154

Phone No.: 03474-268008 web: www.muragachhagovtcollege.org e-mail: mgcnadia2015@gmail.com

Ref. No.....

Date

Semester-III (2022-23 Batch)

(As per syllabus effective from the academic session 2021-22)

Course Code	Course Title	
	B.Sc. Mathematics Hons.	
MATH-H-CC-T-05	Theory of Real & Vector Functions	
MATH-H-CC-T-06	Group Theory I	
MATH-H-CC-T-07	Numerical Methods (Theory) & Numerical Methods Lab	
MATH-H-SEC-T-01	Programming in 'C'	
General Elective Course (B.Sc. Hons. other than Mathematics)		
MATH-H-GE-T-03	Algebra & Analytical Geometry	

Teaching Plan

B.Sc. Mathematics (Honours) SEMESTER-III Course: MATH-H-CC-T-05 Course title: Theory of Real & Vector Functions

Credit-6(5+1) (Theory + Tutorial)

Unit	Торіс	Teacher	No. of
1	 Limits of functions (ε - δ approach). Sequential criterion for limits. Divergence criteria. Limit theorems, one sided limits. Infinite limits and limits at infinity. Continuous functions, neighbourhood property. Sequential criterion for continuity and discontinuity. Algebra of continuous functions. Continuous functions on an interval, Bolzano's Theorem, intermediate value theorem. Location of roots theorem, preservation of intervals theorem. Uniform continuity, non-uniform continuity criteria, uniform 	Dr. Biswajit Saha	Lectures 25L
2	 continuity theorem. Differentiability of a function at a point and in an interval. Caratheodory's theorem. Algebra of differentiable functions. Darboux's theorem. 	Dr. Biswajit Saha	20L
3	 Rolle's theorem. Lagrange's and Cauchy's mean value theorems. Taylor's theorem with Lagrange's and Cauchy's forms of remainder. Application of Taylor's theorem to convex functions. Applications of mean value theorem to inequalities and approximation of polynomials. Relative extrema, interior extremum theorem. Taylor's series and Maclaurin's series expansions of exponential 	Dr. Biswajit Saha	20L

Department of Mathematics

MURAGACHHA, NADIA, PIN- 741154

Phone No.: 03474-268008 web: www.muragachhagovtcollege.org e-mail: mgcnadia2015@gmail.com

No		Date	2
	and trigonometric functions, $\log(1 + x)$, $\frac{1}{ax+b}$, $(1 + x)^n$.		
	• Application of Taylor's theorem to inequalities.		
4	• Vector products.	Dr. Biswajit	10L
	• Introduction to vector functions, operations with vector-valued	Saha	
	functions.		
	• Limits and continuity of vector functions.		
	• Differentiation and integration of vector functions of one variable		
	$\left(\int_{a}^{b}\overline{f(t)}dt\right).$		
	• Gradient, divergence, curl of vector functions.		

B.Sc. Mathematics (Honours) SEMESTER-III Course: MATH-H-CC-T-06 Course title: Group Theory-I

Credit-6(5+1) (Theory + Tutorial)

Unit	Торіс	Teacher	No. of
-			Lectures
1	• Subgroups, examples and properties of subgroups.	Dr. Biswajit	30L
	• Product of two subgroups.	Saha	
	• Cyclic group, examples and properties of cyclic group.		
	• Classification of subgroups of cyclic groups.		
	• Cosets and their properties.		
	• Lagrange's theorem and consequences including Fermat's little		
	theorem.		
2	• External direct product of a finite number of groups.	Dr. Biswajit	25L
	• Centre of a group, centralizer, normalizer.	Saha	
	• Normal subgroups.		
	• Factor groups.		
	• Cauchy's theorem for finite abelian groups.		
3	• Group homomorphisms, basic properties of homomorphisms.	Dr. Biswajit	20L
	• Cayley's theorem.	Saha	
	• Properties of isomorphisms.		
	• First, second and third isomorphism theorems.		

Department of Mathematics

MURAGACHHA, NADIA, PIN- 741154

Phone No.: 03474-268008 web: www.muragachhagovtcollege.org e-mail: mgcnadia2015@gmail.com

Ref. No.....

Date

B.Sc. Mathematics (Honours) SEMESTER-III Course: MATH-H-CC-T-07

Course title: Numerical Methods (Theory) & Numerical Methods Lab

Credit-6 (4+2) (Theory + Practical)

Full Marks-75 (Internal Assessment: 15 marks; Semester-end Exam: 60 marks)

Numerical Methods (Theory)

Unit	Торіс	Teacher	No. of
			Lectures
1	• Algorithms, convergence, errors, relative, absolute, round-off,	Mr. Prabir	10L
	truncation errors.	Chakraborty	
	• Interpolation, Lagrange and Newton's methods. Error bounds.		
	Finite difference operators. Gregory forward and backward		
	difference interpolation. Central difference interpolation formula:		
	Stirling and Bessel interpolation		
	• Numerical differentiation, methods based on interpolations,		
	methods based on finite differences.		
2	• Numerical integration, Newton Cotes formula, Trapezoidal	Mr. Prabir	10L
	rule, Simpson's 1/3rd rule, Simpson's 3/8th rule, Weddle's rule,	Chakraborty	
	Boole's rule. Midpoint rule, composite trapezoidal rule,		
	composite Simpson's 1/3rd rule, Gauss quadrature formula.		
3	• Transcendental and polynomial equations, bisection method,	Mr. Prabir	10L
	Newton's method, secant method, Regula-Falsi method, fixed	Chakraborty	
	point iteration, Newton-Raphson method, rate of convergence of		
	these methods.		
	• System of linear algebraic equations, Gaussian elimination and		
	Gauss Jordan methods, Gauss Jacobi method, Gauss Seidel		
	method and their convergence analysis, LU decomposition		
4	• The algebraic eigenvalue problem, power method.	Mr. Prabir	10L
	• Approximation, least square polynomial approximation.	Chakraborty	
5	• Ordinary differential equations: The method of successive	Mr. Prabir	10L
	approximations, Euler's method, the modified Euler method,	Chakraborty	
	Runge-Kutta methods of orders two and four.		

LIST OF PRACTICAL PROBLEMS (Using 'C' or Python programming)

[Two experiments are to be performed in the presence of External Examiner(s) (Marks: 7.5x2)

and Viva (Marks: 5)]

(A practical note book must be maintained as a part of Internal Assessment)

Unit	Торіс	Teacher	No. of Lectures
1	 (i) Calculate the sum of infinite convergent series. (ii) Find the absolute value of an integer. (iii) Enter 100 integers into an array and sort them in an ascending order. (iv) Bisection Method. 	Mr. Prabir Chakraborty	25L

Department of Mathematics

MURAGACHHA, NADIA, PIN- 741154

Phone No.: 03474-268008 web: www.muragachhagovtcollege.org e-mail: mgcnadia2015@gmail.com

Ref. No	Date
(v) Newton Raphson Method.	
(vi) Secant Method.	
(vii) Regula-Falsi Method.	
(viii) LU decomposition Method.	
(ix) Gauss-Jacobi Method.	
(x) SOR Method or Gauss-Seidel Method.	
(xi) Lagrange's Interpolation	
(xii) Trapezoidal Rule.	
(xiii) Simpson's rule.	

B.Sc. Mathematics (Honours) SEMESTER-III Course: MATH-H-SEC-T-1A Course title: Programming in 'C' Skill Enhancement Course

Credit-2 (Theory)

Unit	Торіс	Teacher	No. of
			Lectures
1	• Brief historical development. Computer generation. Basic	Mr. Prabir	7L
	structure and elementary ideas of computer systems, operating	Chakraborty	
	systems, hardware and software.		
	• Positional number systems: Binary, octal, decimal,		
	hexadecimal systems. Binary arithmetic.		
	• BIT, BYTE, WORD. Coding of data -ASCII, EBCDIC, etc.		
	• Algorithms and flow chart: Important features, ideas about		
	complexities of algorithms. Application in simple problems.		
2	• Programming language and importance of 'C' programming.	Mr. Prabir	18L
	• Constants, variables and data type of 'C'-Program: Character	Chakraborty	
	set. Constants and variables data types, expression, assignment		
	statements, declaration.		
	• Operation and expressions: Arithmetic operators, relational		
	operators, logical operators.		
	• Decision making and branching: Decision making with if		
	statement, if-else statement, nesting if statement, switch		
	statement, break and continue statement.		
	• Control statements: While statement, do-while statement, for		
	statement.		
	• Arrays: One-dimension, two-dimensional and		
	multidimensional arrays, declaration of arrays, initialization of		
	one and multi-dimensional arrays.		
	• User-defined Functions: Definition of functions, scope of		
	variables, return values and their types, function declaration,		
	function call by value, nesting of functions, passing of arrays to		
	functions, recurrence of function.		

Department of Mathematics

MURAGACHHA, NADIA, PIN- 741154

Phone No.: 03474-268008 web: www.muragachhagovtcollege.org e-mail: mgcnadia2015@gmail.com

Ref. No.....

Date

B.Sc. Other than Mathematics (Honours) SEMESTER-III Course: MATH-H-GE-T-03

Course title: Algebra & Analytical Geometry

General Elective Course

Credit-6(5+1) (Theory + Tutorial)

Unit	Торіс	Teacher	No. of Lectures
1	• Complex umbers De Moivre's theorem and its applications. Exponential, Sine, Cosine and Logarithm of a complex number. Definition of a^z . Inverse circular and hyperbolic functions. • Polynomials: Fundamental theorem of algebra (Statement only). Polynomials with real coefficients, nature of roots of an equation (surd or complex roots occur in pairs). Statement of Descartes rule of signs and its applications. Relation between roots and coefficients, transformations of equations. Cardan's method of solution of a cubic equation. • Rank of a matrix: Determination of rank either by considering minors or by sweep-out process. Consistency and solution of a system of linear equations with not more than 3 variables by matrix method. • Equivalence relations and partitions. Functions, composition of functions, invertible functions, one to one correspondence and cardinality of a set • Definition and elementary properties of groups. Concepts of permutation Group, alternating group, finite groups: S_3 , V_4 . The group Z_n of integers under addition modulo n. • Order of an element, order of a group, subgroups, and examples of subgroups.	Mr. Prabir Chakraborty	40L
2	 Transformations of rectangular axes: Translation, rotation, and their combinations. Invariants. General equation of second degree in x and y: Reduction to canonical forms. Classification of conics. Pair of straight lines: Condition that the general equation of 2nd degree in x and y may represent two straight lines. Point of intersection of two intersecting straight lines. Angle between two lines given by ax² + 2hxy + by² = 0. Equation of bisectors. Equation of two lines joining the origin to the points in which a line meets a conic. Polar equation of straight lines and circles, polar equation of a conic refers to a focus as a pole, polar equation of chord joining two points, polar equations of tangents and normals. 	Mr. Prabir Chakraborty	35L

Department of Mathematics

MURAGACHHA, NADIA, PIN- 741154

Phone No.: 03474-268008 web: www.muragachhagovtcollege.org e-mail: mgcnadia2015@gmail.com

Ref. No.....

Date

Semester-V (2022-23 Batch)

(As per syllabus effective from the academic session 2018-19)

Course Code	Course Title
	B.Sc. Mathematics Hons.
MATH-H-CC-T-11	Partial Differential Equations and Applications
MATH-H-CC-T-12	Group Theory-II
MATH-H-DSE-T-01	Linear Programming
MATH-H-DSE-T-02	Probability & Statistics
	B.Sc. Programme/ General
MATH-G-DSE-T-01	Complex Analysis
MATH-G-SEC-T-03	Theory of Equations

Teaching Plan

B.Sc. Mathematics (Honours)

SEMESTER-V

Course: MATH-H-CC-T-11

Course title: Partial Differential Equations & Applications

Credit-6(5+1) (Theory + Tutorial)

Unit	Торіс	Teacher	No. of Lectures
1	Partial differential equations – Basic concepts and definitions. Mathematical problems. First- order equations: classification, construction and geometrical interpretation. Method of characteristics for obtaining general solution of quasi linear equations. Canonical forms of first-order linear equations. Method of separation of variables for solving first order partial differential equations.	Mr. Prabir Chakraborty	20L
2	Derivation of heat equation, wave equation and Laplace equation. Classification of second order linear equations as hyperbolic, parabolic or elliptic. Reduction of second order linear equations to canonical forms.	Mr. Prabir Chakraborty	20L
3	The Cauchy problem, Cauchy-Kowalewskaya theorem, Cauchy problem of an infinite string. Initial boundary value problems. Semi-infinite string with a fixed end, semi-infinite string with a free end. Equations with non-homogeneous boundary conditions. Non- homogeneous wave equation. Method of separation of variables, solving the vibrating string problem.	Mr. Prabir Chakraborty	30L

Department of Mathematics

MURAGACHHA, NADIA, PIN- 741154

Phone No.: 03474-268008 web: www.muragachhagovtcollege.org e-mail: mgcnadia2015@gmail.com

	Date	
Solving the heat conduction problem.		
Graphical Demonstration (Teaching aid)		
	Mr. Prabir	5L
1. Solution of Cauchy problem for first order PDE.	Chakraborty	
2. Finding the characteristics for the first order PDE.		
3. Plot the integral surfaces of a given first order PDE with initial data.		
$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0$ 4. Solution of wave equation $\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0$ for the following associated conditions: (a) $u(x,0) = \phi(x), u_t(x,0) = \psi(x), x \in R, t > 0.$ (b) $u(x,0) = \phi(x), u_t(x,0) = \psi(x), u(0,t) = 0 \ x \in (0,\infty), t > 0$		
$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0$ 5. Solution of wave equation $\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0$ for the following associated conditions: (a) $u(x,0) = \phi(x), u$ $(o,t) = a, u$ $(l,t) = b, 0 < x < l, t > 0.$		
$u(x,0) = \phi(x), x \in R, 0 < t < T.$		

B.Sc. Mathematics (Honours) SEMESTER-V Course: MATH-H-CC-T-12 Course title: Group Theory II

Credit-6(5+1) (Theory + Tutorial)

Unit	Торіс	Teacher	No. of Lectures
1	Automorphism, inner automorphism, automorphism groups, automorphism groups of finite and infinite cyclic groups, applications of factor groups to automorphism groups, Characteristic subgroups, Commutator subgroup and its properties.	Dr. Biswajit Saha	25L
2	Properties of external direct products, the group of units modulo n as an external direct product, internal direct products, Fundamental theorem of finite abelian groups.	Dr. Biswajit Saha	20L
3	Groups acting on themselves by conjugation, class equation and consequences, conjugacy in S_n , p-groups, Sylow's theorems and consequences, Cauchy's theorem, Simplicity of A_n for $n \ge 5$, non-simplicity tests.	Dr. Biswajit Saha	30L

Department of Mathematics

MURAGACHHA, NADIA, PIN- 741154

Phone No.: 03474-268008 web: www.muragachhagovtcollege.org e-mail: mgcnadia2015@gmail.com

Ref. No.....

Date

B.Sc. Mathematics (Honours) SEMESTER-V Course: MATH-H-DSE-T-1A Course title: Linear Programming

Credit-6(5+1) (Theory + Tutorial)

Full Marks-75 (Internal Assessment: 15 marks; Semester-end Exam: 60 marks)

Unit	Торіс	Teacher	No. of
			Lectures
1	Introduction to linear programming problem. Theory of simplex method, graphical solution, convex sets, optimality and unboundedness, the simplex algorithm, simplex method in tableau format, introduction to artificial variables, two-phase method. Big-M method and their comparison.	Mr. Prabir Chakraborty	30L
2	Duality, formulation of the dual problem, primal-dual relationships, economic interpretation of the dual. Transportation problem and its mathematical formulation, northwest-corner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving transportation problem, assignment problem and its mathematical formulation, Hungarian method for solving assignment problem.	Mr. Prabir Chakraborty	25L
3	Game theory: formulation of two persons zero sum games, solving two-person zero sum games, games with mixed strategies, graphical solution procedure, linear programming solution of games.	Mr. Prabir Chakraborty	20L

B.Sc. Mathematics (Honours) SEMESTER-V Course: MATH-H-DSE-T-2A Course title: Probability and Statistics

Department Specific Elective Course

Credit-6(5+1) (Theory + Tutorial)

Unit	Торіс	Teacher	No. of
			Lectures
1	Sample space, probability axioms, real random variables	Mr. Prabir	25L
	(discrete and continuous), cumulative distribution function, probability mass/density functions, mathematical expectation, moments, moment generating function, characteristic function, discrete distributions: uniform, binomial, Poisson, geometric, negative binomial, continuous distributions: uniform, normal, exponential.	Chakraborty	

Department of Mathematics

MURAGACHHA, NADIA, PIN- 741154

Phone No.: 03474-268008 web: www.muragachhagovtcollege.org e-mail: mgcnadia2015@gmail.com

Ref. No		Da	ite
2	Joint cumulative distribution function and its properties, joint	Mr. Prabir	20L
	probability density functions, marginal and conditional	Chakraborty	
	distributions, expectation of function of two random variables,		
	conditional expectations, independent random variables,		
	bivariate normal distribution, correlation coefficient.		
3	Chebyshev's inequality, statement and interpretation of (weak)	Mr. Prabir	20L
	law of large numbers and strong law of large numbers. Central	Chakraborty	
	limit theorem for independent and identically distributed		
	random variables with finite variance.		
4	Random Samples, Sampling Distributions, Estimation of	Mr. Prabir	10L
	parameters, Testing of hypothesis.	Chakraborty	

B.Sc. Mathematics (GENERAL) SEMESTER-V Course: MATH-G-DSE-T-1B

Course title: Complex Analysis

Discipline specific Elective Course

Credit-6(5+1) (Theory + Tutorial)

Full Marks-75 (Internal Assessment: 15 marks; Semester-end Exam: 60 marks)

Unit	Торіс	Teacher	No. of
			Lectures
1	Limits, Limits involving the point at infinity, continuity. Properties of complex numbers, regions in the complex plane, functions of complex variable, mappings. Derivatives, differentiation formulas, Cauchy- Riemann equations, sufficient conditions for differentiability.	Dr. Biswajit Saha	20L
2	Analytic functions, examples of analytic functions, exponential function, Logarithmic function, trigonometric function, derivatives of functions, definite integrals of functions.	Dr. Biswajit Saha	20L
3	Contours, Contour integrals and its examples, upper bounds for moduli of contour integrals. Cauchy- Goursat theorem, Cauchy integral formula.	Dr. Biswajit Saha	20L
4	Liouville's theorem and the fundamental theorem of algebra. Convergence of sequences and series, Taylor series and its examples.	Dr. Biswajit Saha	10L
5	Laurent series and its examples, absolute and uniform convergence of power series.	Dr. Biswajit Saha	5L

B. Sc. Mathematics (GENERAL) SEMESTER-V Course: MATH-G-SEC-T-3A Course title: Integral Calculus Skill Enhancement course

Department of Mathematics

MURAGACHHA, NADIA, PIN- 741154

Phone No.: 03474-268008 web: www.muragachhagovtcollege.org e-mail: mgcnadia2015@gmail.com

Ref. No.....

Date

Credit-2 (Theory)

Unit	Торіс	Teacher	No. of Lectures
			Lectures
1	Integration by Partial fractions, integration of rational and	Dr. Biswajit	25L
	irrational functions. Properties of definite integrals. Reduction	Saha	
	formulae for integrals of rational, trigonometric, exponential		
	and logarithmic functions and of their combinations.		
2	Areas and lengths of curves in the plane, volumes and surfaces	Dr. Biswajit	25L
	of solids of revolution. Double and Triple integrals.	Saha	

Department of Mathematics

MURAGACHHA, NADIA, PIN- 741154

Phone No.: 03474-268008 web: www.muragachhagovtcollege.org e-mail: mgcnadia2015@gmail.com

Ref. No.....

Date

TEACHING PLAN FOR THE ACADEMIC SESSION 2024-25 EVEN SEMESTER

Semester-II

(As per syllabus effective from the academic session 2021-22)

Course Code	Course Title		
B.Sc. Mathematics Hons.			
MATH-H-CC-T-03	Real Analysis		
MATH-H-CC-T-04	Differential Equations		
General Elective Course (B.Sc. Hons. other than Mathematics)			
MATH-H-GE-T-02	Calculus & Differential Equations		

<u>Teaching Plan</u>

B.Sc. Mathematics (Honours) SEMESTER-II Course: MATH-H-CC-T-03 Course title: Real Analysis

Credit-6(5+1) (Theory + Tutorial)

Unit	Торіс	Teacher	No. of Lectures
1	 The natural numbers Peano's axioms. Review of algebraic and order properties of R . Bounded above sets, bounded below sets, bounded sets, unbounded sets. L.U.B. (supremum) and G.L.B. (infimum) of a set 	Dr. Biswajit Saha	17L
	 and its properties. L.U.B. axiom or order completeness of R . Idea of countable sets, uncountable sets and uncountability of . Countability of Q . The Archimedean property, density of rational (and irrational) numbers in R . 		
2	 Intervals, ε-neighbourhood of a point in R, interior points and open sets, limit points and closed sets, union and intersection of open and closed sets, isolated points, adherent point, derived set, closure of a set, interior of a set. Illustrations of Bolzano-Weierstrass theorem for sets. Upper and lower limits of a subset of R Compact set in R basic properties of compact sets. Lindelöf covering theorem (statement only). Heine-Borel theorem and its application. Converse of Heine-Borel theorem. 	Dr. Biswajit Saha	18L
3	• Sequences, bounded sequence, convergent sequence, limit of a	Dr. Biswajit	20L

Department of Mathematics

MURAGACHHA, NADIA, PIN- 741154

Phone No.: 03474-268008 web: www.muragachhagovtcollege.org e-mail: mgcnadia2015@gmail.com

	sequence, $\lim \inf x_n$, $\lim \sup x_n$.	Saha	
	• Limit theorems. Sandwich theorem. Nested interval theorem.		
	• Monotone sequences, monotone convergence theorem.		
	• Subsequences, divergence criteria. Monotone subsequence theorem (statement only).		
	Bolzano Weierstrass theorem for sequences.		
	• Cauchy sequence, Cauchy's convergence criterion, Cauchy's 1st and 2nd limit theorems.		
4	• Infinite series, convergence and divergence of infinite series, Cauchy criterion.	Dr. Biswajit Saha	15L
	• Tests for convergence: comparison test, limit comparison test, ratio test: D'Alembert's ratio test, Raabe's test, Cauchy's root test, Gauss test		
	(Statement only), integral test, Cauchy's condensation test with		
	examples.		
	• Alternating series, Leibnitz test. Absolute and conditional convergence.		
	Graphical Demonstration (Teaching Aid)		
1. Pl	otting of recursive sequences.	Dr. Biswajit	4L
2. St	udy the convergence of sequences through plotting.	Saha	
3. V	erify Bolzano-Weierstrass theorem through plotting of sequences		
and	hence identify convergent subsequences from the plot.		
	udy the convergence/divergence of infinite series by plotting their		
	ences of partial sum.		
	auchy's root test by plotting nth roots.		
	atio test by plotting the ratio of nth and $(n+1)$ th term.		

B.Sc. Mathematics (Honours) SEMESTER-II Course: MATH-H-CC-T-04 Course title: Differential Equations

Credit-6(5+1) (Theory + Tutorial)

Unit	Торіс	Teacher	No. of Lectures
1	• Differential equations and mathematical models.	Mr. Prabir	15L
	• General, particular, explicit, implicit and singular solutions of a differential equation.	Chakraborty	
	• Separable equations and equations reducible to this form.		
	• Exact differential equations and integrating factors.		
	• Linear equation and Bernoulli equations, special integrating factors and		
	transformations.		
	• First order and higher degree differential equations, solvable for <i>x</i> , <i>y</i> and		
	p, Clairaut's Equations general and singular solutions.		
2	• Lipschitz condition and Picard's Theorem (Statement only).	Mr. Prabir	15L
	• General solution of homogeneous equation of second order, principle of	Chakraborty	
	superposition for homogeneous equation.		
	• Wronskian: its properties and applications, linear homogeneous and		
	non-homogeneous equations of higher order with constant coefficients.		

Department of Mathematics

MURAGACHHA, NADIA, PIN- 741154

Phone No.: 03474-268008 web: www.muragachhagovtcollege.org e-mail: mgcnadia2015@gmail.com

)		Date	
	• Euler's equation, method of undetermined coefficients.		
	• Method of variation of parameters.		
3	• Systems of linear differential equations.	Mr. Prabir	15L
	• Types of linear systems.	Chakraborty	
	• Differential operators.		
	• An operator method for linear systems with constant coefficients.		
	• Basic Theory of linear systems in normal form.		
	• Homogeneous linear systems with constant coefficients, two Equations		
	in two unknown functions.		
4	• Equilibrium points.	Mr. Prabir	10L
	• Interpretation of the phase plane.	Chakraborty	
	• Power series solution of a differential equation about an ordinary point,		
	solution about a regular singular point.		
5	• Partial differential equations – Basic concepts and definitions.	Mr. Prabir	15L
	Mathematical problems.	Chakraborty	
	• First- order equations: classification, construction and geometrical		
	interpretation, Lagrange's method, Charpit's method.		
	• Method of characteristics for obtaining general solution of quasi-linear		
	equations.		
	• Canonical forms of first-order linear equations.		
	• Method of separation of variables for solving first order partial		
	differential equations.		
	Graphical Demonstration (Teaching Aid)		
1. Pl	otting a family of curves which are solutions of second order differential	Mr. Prabir	5L
equa	ions.	Chakraborty	
2. Pl	otting a family of curves which are solutions of third order differential		
equa	ions.		

B.Sc. Other than Mathematics (Honours) SEMESTER-II Course: MATH-H-GE-T-02 Course title: Calculus & Differential Equations

General Elective Course

Credit-6(5+1) (Theory + Tutorial) Full Marks-75 (Internal Assessment: 15 marks; Semester-end Exam: 60 marks)

Unit	Торіс	Teacher	No. of Lectures
1	• Real-valued functions defined on an interval, limit and Continuity of a function (using $\in -\delta$). Algebra of limits. Differentiability of a	Mr. Prabir Chakraborty	35L
	function. • Successive derivative Leibnitz's theorem and its application to problems of type $e^{ax+b} \sin x$, $e^{ax+b} \cos x$, $(ax + b)^n \sin x$, $(ax + b)^n$		
	 b)ⁿ cos x Partial derivatives. Euler's theorem on homogeneous function of two and three variables. 		
	 Indeterminate Forms L'Hospital's Rule (Statement and Problems only). Statement of Rolle's Theorem and its geometrical interpretation. 		

Department of Mathematics

MURAGACHHA, NADIA, PIN- 741154

Phone No.: 03474-268008 web: www.muragachhagovtcollege.org e-mail: mgcnadia2015@gmail.com

Ref. No	Ref. No			ate	
		Mean value theorems of Lagrange and Cauchy. Statements of Taylor's and Maclaurin's theorems with Lagrange's and Cauchy's forms of remainders. Taylor's and Maclaurin's infinite series of functions like e^x , sin x, cos x, $(1 + x)^n$, log $(1 + x)$ with restrictions wherever necessary. • Application of the principle of maxima and minima for a function of a single variable.			
	2	•Reduction formulae, derivations and illustrations of reduction formulae of the type $\int \sin^n x dx$, $\int \cos^n x dx$, $\int \tan^n x dx$, $\int \sec^n x dx$, $\int (\log x)^n dx$, $\int \sin^n x \cos^m x dx$	Mr. Prabir Chakraborty	15L	
	3	 First order equations: (i) Exact equations and those reducible to such equations. (ii) Euler's and Bernoulli's equations (Linear). (iii) Clairaut's Equations General and Singular solutions. Second order differential equation: (i) Method of variation of parameters, (ii) Method of undetermined coefficients. 	Mr. Prabir Chakraborty	25L	

Department of Mathematics

MURAGACHHA, NADIA, PIN- 741154

Phone No.: 03474-268008 web: www.muragachhagovtcollege.org e-mail: mgcnadia2015@gmail.com

Ref. No.....

Date

Semester-IV (2023-24 Batch)

(As per syllabus effective from the academic session 2021-22)

Course Code	Course Title				
	B.Sc. Mathematics Hons.				
MATH-H-CC-T-08	Ring Theory and Linear Algebra				
MATH-H-CC-T-09	Multivariate Calculus& Tensor Analysis				
MATH-H-CC-T-10	Linear Programming Problems & Game Theory				
MATH-H-SEC-T-02	Graph Theory				
General Elective Course (B.Sc. Hons. other than Mathematics)					
MATH-H-GE-T-04	Calculus & Differential Equation				

Teaching Plan

B.Sc. Mathematics (Honours) SEMESTER-IV Course: MATH-H-CC-T-08

Course title: Riemann Integration and Series of Functions

Credit-6(5+1) (Theory + Tutorial)

Unit	Торіс	Teacher	No. of Lectures
1	 Definition and examples of rings. Properties of rings. Subrings. Integral domains and fields. Characteristics of a ring. Ideal, ideal generated by a subset of a ring. Factor rings. Operations on ideals. Prime and maximal ideals. 	Dr. Biswajit Saha	20L
2	 Ring homomorphisms, properties of ring homomorphisms. Isomorphism theorems I, II and III. Field of quotients. 	Dr. Biswajit Saha	20L
3	 Concept of Vector space over a field: Examples, concepts of Linear combinations, linear dependence and independence of a finite number of vectors. Sub- space, concepts of generators and basis of a finite dimensional vector space. Replacement theorem. Extension theorem. Deletion theorem and their applications. Row space, column space. Euclidean Spaces. Orthogonal and orthonormal vectors. Gram-Schmidt process of orthogonalization. 	Dr. Biswajit Saha	20L
4	 Linear transformations. Null space. Range, rank and nullity of a linear transformation, matrix representation of a linear transformation, algebra of linear transformations. Eigenvalues, eigen vectors and characteristic equation of a matrix. Matric polynomials, Cayley-Hamilton theorem and its use in finding the 	Dr. Biswajit Saha	15L

Department of Mathematics

MURAGACHHA, NADIA, PIN- 741154

Phone No.: 03474-268008 web: www.muragachhagovtcollege.org e-mail: mgcnadia2015@gmail.com

 Ref. No.....
 Date

 inverse of a matrix.
 • Diagonalization, Canonical forms.

B.Sc. Mathematics (Honours) SEMESTER-IV Course: MATH-H-CC-T-09

Course title: Multivariate Calculus& Tensor Analysis

Credit-6(5+1) (Theory + Tutorial)

Unit	Торіс	Teacher	No. of Lectures
1	• Functions of several variables, limit and continuity of functions of two or more variables.	Dr. Biswajit Saha	20L
	 Differentiability and total differentiability. Partial differentiation. Sufficient condition for differentiability. Schwarz Theorems, Young's Theorems. 		
	 Chain rule for one and two independent parameters. Homogeneous function and Euler's theorem on homogeneous 		
	functions and its converse.Jacobians and functional dependence.		
	• Extrema of functions of two variables, method of Lagrange multipliers, constrained optimization problems.		
2	 Double integration over a rectangular region. Double integration over non-rectangular regions. Double integrals in polar coordinates. Triple integrals. Triple integral over parallelepiped and solid regions. 	Dr. Biswajit Saha	15L
	 Triple integrals. Triple integral over parallelepiped and solid regions. Volume by triple integrals, cylindrical and spherical coordinates. Change of variables in double integrals and triple integrals. 		
3	 Directional derivatives. The gradient, maximal and normal property of the gradient. Line integrals, applications of line integrals: Mass and work. 	Dr. Biswajit Saha	15L
	Fundamental theorem for line integrals, conservative vector fields, independence of path.		
	• Green's theorem, surface integrals, integrals over parametrically defined surfaces. Stoke's theorem, The divergence theorem. pplications of Green's, Stoke's and divergence theorems.		
4	• A tensor as a generalized concept of a vector in E^2 and its generalization in E^n . Space of n -dimension. Transformation of coordinates. Summation convention.	Dr. Biswajit Saha	25L
	 Definition of scalar or invariant. Contravariant, covariant vectors and tensors, mixed tensors of arbitrary order. Kronecker delta. Equality of tensors, addition, subtraction of two tensors. 		
	 Equality of tensors, addition, subtraction of two tensors. Outer product of tensors, contraction and inner product of tensors. Symmetric and skew symmetric tensors. 		
	 Quotient law, reciprocal tensor of a tensor. Metric tensor, Christoffel symbol, covariant derivative. 		

Department of Mathematics

MURAGACHHA, NADIA, PIN- 741154

Phone No.: 03474-268008 web: www.muragachhagovtcollege.org e-mail: mgcnadia2015@gmail.com

Ref. No.....

Date

B.Sc. Mathematics (Honours) SEMESTER-IV Course: MATH-H-CC-T-10 Course title: Linear Programming Problems & Game Theory

Credit-6(4+2) (Theory + Practical)

Full Marks-75 (Internal Assessment: 15 marks; Semester-end Exam: 60 marks)

Unit	Торіс	Teacher	No. of
			Lectures
1	• Introduction to linear programming problems. Mathematical	Mr. Prabir	10L
	formulation of LPP. Graphical solution.	Chakraborty	
	• Convex sets. Basic solutions (B.S.) and non-basic solutions.		
	Reduction of B.F.S from B.S.		
2	• Theory of simplex method. Optimality and unboundedness, the	Mr. Prabir	20L
	simplex algorithm, simplex method in tableau format, introduction to	Chakraborty	
	artificial variables, two-phase method. Big-M method and their		
	comparison.		
	• Duality, formulation of the dual problem, primal-dual relationships,		
	economic interpretation of the dual.		
3	• Transportation problem and its mathematical formulation, northwest-	Mr. Prabir	25L
	corner method, least cost method and Vogel approximation method for	Chakraborty	
	determination of initial basic solution. Algorithms for solving		
	transportation problems.		
	• Assignment problem and its mathematical formulation, Hungarian		
	method for solving assignment problems.		
	Travelling Salesman Problems.		
4	• Game theory: Formulation of two-person zero sum games.	Mr. Prabir	20L
	• Solving two persons zero sum games. Games with mixed strategies.	Chakraborty	
	Graphical solution procedure.		
	 Solving game using simplex algorithm. 		

B.Sc. Mathematics (Honours) SEMESTER-IV Course: MATH-H-SEC-T-2B Course title: Graph Theory

Skill Enhancement Course

Credit-2(Theory)

Unit	Торіс	Teacher	No. of
			Lectures
1	• Definition, examples and basic properties of graphs, pseudo graphs,	Mr. Prabir	8L
	complete graphs, bi-partite graphs isomorphism of graphs.	Chakraborty	
2	• Eulerian circuits, Eulerian graphs, semi-Eulerian graphs, Hamiltonian	Mr. Prabir	10L
	cycles.	Chakraborty	
	• Representation of a graph by matrix, the adjacency matrix, incidence		
	matrix, weighted graph.		
3	• Travelling salesman's problem, shortest path, tree and their	Mr. Prabir	7L
	properties, spanning tree, Dijkstra's algorithm, Warshall algorithm.	Chakraborty	

Department of Mathematics

MURAGACHHA, NADIA, PIN- 741154

Phone No.: 03474-268008 web: www.muragachhagovtcollege.org e-mail: mgcnadia2015@gmail.com

Ref. No.....

Date

B.Sc. Other than Mathematics (Honours) SEMESTER-IV Course: MATH-H-GE-T-04

Course title: Calculus & Differential Equation

General Elective Course

Credit-6(5+1) (Theory + Tutorial)

Unit	Торіс	Teacher	No. of Lectures
1	 Real-valued functions defined on an interval, limit and Continuity of a function (using ∈ -δ). Algebra of limits. Differentiability of a function. Successive derivative Leibnitz's theorem and its application to problems of type e^{ax+b} sin x, e^{ax+b} cos x, (ax + b)ⁿ sin x, (ax + b)ⁿ cos x Partial derivatives. Euler's theorem on homogeneous function of two and three variables. Indeterminate Forms L'Hospital's Rule (Statement and Problems only). Statement of Rolle's Theorem and its geometrical interpretation. Mean value theorems of Lagrange and Cauchy. Statements of Taylor's and Maclaurin's theorems with Lagrange's and Cauchy's forms of remainders. Taylor's and Maclaurin's infinite series of functions like e^x, sin x, cos x, (1 + x)ⁿ, log(1 + x) with restrictions wherever necessary. Application of the principle of maxima and minima for a function of a single variable. 	Dr. Biswajit Saha	35L
2	•Reduction formulae, derivations and illustrations of reduction formulae of the type $\int \sin^n x dx$, $\int \cos^n x dx$, $\int \tan^n x dx$, $\int \sec^n x dx$, $\int (\log x)^n dx$, $\int \sin^n x \cos^m x dx$	Dr. Biswajit Saha	15L
3	 First order equations: (i) Exact equations and those reducible to such equations. (ii) Euler's and Bernoulli's equations (Linear). (iii) Clairaut's Equations General and Singular solutions. Second order differential equation: (i) Method of variation of parameters, (ii) Method of undetermined coefficients. 	Dr. Biswajit Saha	25L

Department of Mathematics

MURAGACHHA, NADIA, PIN- 741154

Phone No.: 03474-268008 web: www.muragachhagovtcollege.org e-mail: mgcnadia2015@gmail.com

Ref. No.....

Date

Semester-VI (2022-23 Batch)

(As per syllabus effective from the academic session 2018-19)

Course Code	Course Title			
	B.Sc. Mathematics Hons.			
MATH-H-CC-T-13	Metric Spaces and Complex Analysis			
MATH-H-CC-T-14	Ring Theory and Linear Algebra II			
MATH-H-DSE-T-03	Number Theory			
MATH-H-DSE-T-04	Mechanics			
B.Sc. Programme/ General				
MATH-G-DSE-T-02	Linear Programming			
MATH-G-SEC-T-04	Probability and Statistics			

Teaching Plan

B.Sc. Mathematics (Honours) SEMESTER-VI Course: MATH-H-CC-T-13 Course title: Metric Spaces and Complex Analysis

Credit-6(5+1) (Theory + Tutorial)

Unit	Торіс	Teacher	No. of Lectures
1	Metric spaces: sequences in metric spaces, Cauchy sequences. Complete metric spaces, Cantor's theorem.	Dr. Biswajit Saha	15L
2	Continuous mappings, sequential criterion and other characterizations of continuity. Uniform continuity. Compactness and connectedness in metric spaceses. Compactness: Sequential compactness, Heine-Borel property, totally bounded spaces, finite intersection property, and continuous functions on compact sets. Homeomorphism	Dr. Biswajit Saha	20L
3	Limits, limits involving the point at infinity, continuity. Properties of complex numbers, regions in the complex plane, functions of complex variable, mappings. Derivatives, differentiation formulas, Cauchy-Riemann equations, sufficient conditions for differentiability.	Dr. Biswajit Saha	20L
4	Analytic functions, examples of analytic functions, exponential function, logarithmic function, trigonometric function, derivatives of functions, and definite integrals of functions. Contours, Contour integrals and its examples, upper bounds for moduli of contour integrals. Cauchy-Goursat theorem, Cauchy integral formula.	Dr. Biswajit Saha	20L

Department of Mathematics

MURAGACHHA, NADIA, PIN- 741154

Phone No.: 03474-268008 web: www.muragachhagovtcollege.org e-mail: mgcnadia2015@gmail.com

Ref. No.....

Date

B.Sc. Mathematics (Honours) SEMESTER-VI Course: MATH-H-CC-T-14

Course title: Ring Theory and Linear Algebra II

Credit-6(5+1) (Theory + Tutorial)

Full Marks-75 (Internal Assessment: 15 marks; Semester-end Exam: 60 marks)

Unit	Торіс	Teacher	No. of Lectures
1	Ring homomorphisms, properties of ring homomorphisms. Isomorphism theorems I, II and III, field of quotients. Polynomial rings over commutative rings, division algorithm and consequences, principal ideal domains, factorization of polynomials, reducibility tests, irreducibility tests, Eisenstein criterion, and unique factorization in Z [x].	Dr. Biswajit Saha	25L
2	Dual spaces, dual basis, double dual, transpose of a linear transformation and its matrix in the dual basis, annihilators. Eigen spaces of a linear operator.	Dr. Biswajit Saha	20L
3	Diagonalizability, invariant subspaces and Cayley-Hamilton theorem, the minimal polynomial for a linear operator, canonical forms, Inner product spaces and norms, Gram-Schmidt orthogonalisation process, orthogonal complements.	Dr. Biswajit Saha	30L

B.Sc. Mathematics (Honours) SEMESTER-VI Course: MATH-H-DSE-T-3B

Course title: Number Theory Credit-6(5+1) (Theory + Tutorial)

Unit	Торіс	Teacher	No. of Lectures
1	Linear diophantine equation, prime counting function, statement of prime number theorem, Goldbach conjecture, linear congruences, complete set of residues. Chinese remainder theorem, Fermat's little theorem, Wilson's theorem.	Dr. Biswajit Saha	30L
2	Number theoretic functions, sum and number of divisors, totally multiplicative functions, definition and properties of the Dirichlet product, the Mobius Inversion formula, the greatest integer function, Euler's phi-function, Euler's theorem, reduced set of residues, some properties of Euler's phi-function.	Dr. Biswajit Saha	25L
3	Order of an integer modulo n, primitive roots for primes, composite numbers having primitive roots, Euler's criterion, the Legendre symbol and its properties, quadratic reciprocity, quadratic congruences with composite moduli. Public key encryption, RSA encryption and decryption, the equation $x^2 + y^2 = z^2$, Fermat's Last theorem. (statement)	Dr. Biswajit Saha	20L

Department of Mathematics

MURAGACHHA, NADIA, PIN- 741154

Phone No.: 03474-268008 web: www.muragachhagovtcollege.org e-mail: mgcnadia2015@gmail.com

Ref. No.....

Date

B.Sc. Mathematics (Honours) SEMESTER-VI Course: MATH-H-DSE-T-4A Course title: Mechanics

Department Specific Elective Course

Credit-6(5+1) (Theory + Tutorial)

Unit	Торіс	Teacher	No. of
			Lectures
1	Co-planar forces. Astatic equilibrium. Friction. Equilibrium of a particle	Mr. Prabir	25L
	on a rough curve. Virtual work Forces in three dimensions. General	Chakraborty	
	conditions of equilibrium. Centre of gravity for different bodies. Stable		
	and unstable equilibrium.		
2	Central force. Constrained motion, varying mass, tangent and normal	Mr. Prabir	10L
	components of acceleration, modelling ballistics and planetary motion,	Chakraborty	
	Kepler's second law.		
3	Equations of motion referred to a set of rotating axes. Motion of a	Mr. Prabir	20L
	projectile in a resisting medium. Stability of nearly circular orbits.	Chakraborty	
	Motion under the inverse square law.Slightly disturbed orbits. Motion		
	of artificial satellites. Motion of a particle in three dimensions. Motion		
	on a smooth sphere, cone, and on any surface of revolution.		
4	Degrees of freedom. Moments and products of inertia. Momental	Mr. Prabir	20L
	Ellipsoid. Principal axes. D'Alembert's	Chakraborty	
	Principle. Motion about a fixed axis. Compound pendulum. Motion of a		
	rigid body in two dimensions under		
	finite and impulsive forces. Conservation of momentum and energy.		

Department of Mathematics

MURAGACHHA, NADIA, PIN- 741154

Phone No.: 03474-268008 web: www.muragachhagovtcollege.org e-mail: mgcnadia2015@gmail.com

Ref. No.....

B.Sc. Mathematics (GENERAL) SEMESTER-VI Course: MATH-G-DSE-T-2A

Course title: Linear Programming

Discipline specific Elective Course; Credit-6(5+1) (Theory + Tutorial)

Unit	Торіс	Teacher	No. of
			Lectures
1	Introduction to linear programming problems. Theory of simplex	Mr. Prabir	20L
	method, graphical solution, convex sets, optimality and	Chakraborty	
	unboundedness, the simplex algorithm, simplex method in tableau		
	format, introduction to artificial variables, two-phase method. Big-M		
	method and their comparison.		
2	Duality, formulation of the dual problem, primal-dual relationships,	Mr. Prabir	20L
	economic interpretation of the dual.	Chakraborty	
3	Transportation problem and its mathematical formulation, northwest-	Mr. Prabir	20L
	corner method, least cost method and Vogel approximation method	Chakraborty	
	for determination of starting basic solution, algorithm for solving		
	transportation problem, assignment problem and its mathematical		
	formulation, Hungarian method for solving assignment problem.		
4	Game theory: formulation of two-person zero sum games, solving two-	Mr. Prabir	10L
	person zero sum games, games with mixed strategies, graphical	Chakraborty	
	solution procedure, linear programming solution of games.		

B.Sc. Mathematics (GENERAL) SEMESTER-VI Course: MATH-G-SEC-T-4A

Course title: Probability and Statistics

Skill Enhancement course

Credit-2 (Theory)

Full Marks-50 (Internal Assessment: 10 marks; Semester-end Exam: 40 marks)

Unit	Торіс	Teacher	No. of Lectures
1	Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, probability mass/density functions, mathematical expectation, moments, moment generating function, characteristic function, discrete distributions: uniform, binomial, Poisson, continuous distributions: uniform, normal, exponential.	Dr. Biswajit Saha	25L
2	Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions, expectation of function of two random variables, conditional expectations, independent random variables.	Dr. Biswajit Saha	25L

Date